

Course Code: CSI 233 Course Title: Theory of ComputingTotal Marks: 30Duration: 1 hour 45 minutes

Answer all the questions. Figures in the right-hand margin indicate full marks.

1. a) Draw the state diagram of a DFA that accepts the strings containing exactly two consecutive 1's. (Accepted: 101100, 0110110011; Rejected: 0111100, 101010). Here, $\sum = \{0, 1\}$. Also write the components of the DFA. [2 + 2]

b) Design a DFA that accepts the strings where the number of a's is divisible by 3. Draw the state diagram only. Here, $\sum = \{a, b\}$ [2]

2. a) Draw the state diagram of an NFA / ε -NFA which accepts strings having both **'web'** and **'security'** as substrings . Here, $\Sigma = \{a, b, c, d, ..., z\}$ [2]

b) Draw the state diagram of an NFA / ε -NFA which accepts strings having 1 at the 3rd position from the last. Here, $\Sigma = \{0, 1\}$ [2]

c) Draw the state diagram of an NFA / ϵ -NFA which recognizes leap years. Assume that, leap year occurs every 4 years starting from 0. Here, $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$. [2]

3. a) Draw the ε -NFA for Regular Expression $(ba^* + b^+ + \varepsilon)^*$ [2]

b) Give a regular expression for all 5-digit hexadecimal numbers (e.g. 21EFC, 31ABC). [2]

c) Write the regular expression over the alphabet $\{0, 1\}$ where all strings containing no more than one (1) occurrence of the substring 00. (Accepted: ε , 0100, 10010, 0101; Rejected: 000, 100100). [2] 4. Consider the following ε -NFA:

Input States	3	a	b	c
$\rightarrow Q_0$	$\{Q_1\}$	$\{Q_1, Q_3\}$	Ø	Ø
Q ₁	Ø	Ø	$\{Q_3\}$	Ø
Q ₂	$\{Q_4\}$	$\{Q_0\}$	Ø	Ø
Q ₃	$\{Q_1\}$	Ø	Ø	$\{Q_4\}$
*Q ₄	$\{Q_0\}$	Ø	$\{Q_2\}$	Ø

a) Compute the ε -closure of each state.

[2]

b) Convert the ε-NFA to equivalent **DFA**. Show both **transition table** and [4] **state diagram** of DFA

ii) 10100000101

^{5.} a) For the given diagram, check whether input strings will be accepted or not. [2] i) 101011001

b) Write the language of regular expression $(aa)^* + (bb)^*b$.	[2]

c) Suppose $L= \{ba, ab, bbb\}$. Write down the value of L^2 . [2]