

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam. : : Trimester: Fall 2018

Course Code: CSI 233 Course Title: Theory of Computing

Total Marks: 40 Duration: 2:00 hours

Answer all the questions. Figures are in the right-hand margin indicate full marks.

1.	a) Design a Push Down Automata (PDA) for the given language -	[4]
	L = $\{a^{i}b^{j}c^{k}d^{m} i + j = k \text{ and } i, j, k, m > 0 \}.$	
	b) Now write the components of your designed PDA.	[2]
	c) Write Instantaneous Description (ID) for the string aaabccccd for this PDA.	[2]
2.	 a) S → AB C A → aAb ab B → cBd cd C → aCd aDd D → bDc bc Can the string 'aabbccdd' be derived from the above Context Free Grammar? If yes, show the leftmost and rightmost derivation. Is the leftmost derivation unique? If not, show the other leftmost derivation. 	[2+2+1]
	b) $S \rightarrow ABA$ $A \rightarrow Aa \in B$ $B \rightarrow bB \in B$ Is the grammar ambiguous? Justify your answer with a suitable example. (Give parse trees)	[3]
3.	a) Design a Context Free Grammar (CFG) for the given language – $L = \{ a^i b^j c^k i, j, k > 0 \text{ and } i = j \}.$ Now write the components of the CFG.	[3+1]
	b) Design a CFG for any valid decimal numbers . Accepted: +3.54, -4.26 Rejected: +2., 7.	[2]
	c) Find the language of the CFG. $S \rightarrow aaSB aB$ $B \rightarrow b$	[2]
4.	a) Convert the following CFG to Chomsky Normal Form: $S \rightarrow DBC \mid Ba$ $B \rightarrow 0B1 \mid 01 \mid \varepsilon$ $C \rightarrow aCb \mid aC \mid Bb$ $D \rightarrow bD \mid D$	[4]
	b) Convert the following CFG to Chomsky Normal Form: $S \rightarrow aX \mid bY \mid b \mid ZZc$ $X \rightarrow Yaa \mid abZ \mid \varepsilon$ $Y \rightarrow bXXb \mid ab \mid cZ$ $Z \rightarrow a \mid b \mid XZ \mid \varepsilon$	[4]
5.	a) Design Turing Machine for odd length palindrome . Also write the components of the Turing Machine.	[3+1]

